

FID Department for International Development

The DFID-Met Office Hadley Centre Climate Science Research Partnership (CSRP)

Richard Graham (Met Office Hadley Centre)

Acknowledgements:

Met Office: Cath Senior, Adam Scaife, Richard Jones, Peter Stott, David Parker, Dave Rowell, Michael Vellinga, Wilfran Moufouma-Okia, Caroline Bain, Fraser Lott, Nikos Christidis, Lizzie Good, Ruth Comer, Andrew Colman, Jeff Knight, Martin Andrews

AMMA 4th IM, Toulouse, 6 July 2012 © Crown copyright Met Office http://www.metoffice.gov.uk/csrp/

CSRP: Project Goal and Purpose

Goal:

Vulnerable societies and decision makers in developing countries to follow climate resilient development pathways

Purpose:

Improved *knowledge* and climate science *capacity* provides robust evidence on current and likely future climate conditions, for *use* by decision makers in Africa.

Science and Capacity Building outputs

CSRP: climate and modelling research, applications, capacity building – Africa Met Office Hadley Centre

Initial consultation with African users of climate predictions

• To determine priority prediction and capacity building needs

Science component:

- 1. Improved understanding and modelling of drivers of African climate remote (e.g. ENSO), local (e.g. soil moisture); (C. Senior)
- 2. Develop 'seamless' monthly-decadal system, trial new 'userdriven' predictions, monitoring and 'attribution'; (A. Scaife)
- 3. Regional Climate Model downscaling towards higher spatial detail in forecasts (PRECIS); (R. Jones)

Capacity building component: (R. Graham)

- 4. CSRP Fellowship scheme: 11 fellows appointed;
- 5. Workshops: Capacity building workshops in climate science

Outputs 1: Improved understanding and modelling

© Crown copyright Met Office

How well do models used in IPCC's AR4 represent observed correlations between large-scale sea-surface temperature (SST) and African seasonal rainfall?

Rainfall and SST Areas

Rainfall regions defined such that interannual anomalies are spatially homogeneous and temporally homogeneous (month-to-month)

1) Compute timeseries of area-average rainfall for 6 regions over Africa: Sahel (JAS), Guinea Coast (JAS), Kenya-Somalia (OND), Tanzania (OND), Zimbabwe (ND), SW.Africa (DJF)

- 2) Compute timeseries of area-average SST or SST dipoles for 6 tropical regions for each of the above seasons: Tropical Atlantic Dipole, Equatorial Atlantic, Mediterranean, Central Indian Ocean, Indian Ocean Dipole, Nino3.4
- 3) Do this with data from: Observations (CRU3.1 and HadISST1.1) and 25 coupled models

© Crown copyright Met Office

Dave Rowell

Are Some Teleconnections Easier to Model than Others?

Skill of Model Teleconnections

a null hypothesis that model and observed SSTrainfall correlations derive from the same © Crown copyright Met Office population

- Teleconnections that are easier to model:
 - Indian Ocean Tanzania
 - Indian Ocean Dipole Kenya-Somalia
 - Mediterranean Sahel
- Teleconnections that are hard to model:
 - Equatorial Atlantic Guinea Coast
 - ENSO Kenya-Somalia

Dave Rowell

 No obvious relationship between model teleconnection skill and the SST or precip biases in the teleconnection regions.

• The causes of model teleconnection errors are not straightforward! *Dave Rowell*

Rainy season onset – focus on West Africa How well do models used in IPCC's AR4 represent WAM season onset?

Hadley Centre

West African Monsoon (latitude Vs time)

Sample of CMIP3 models from AR4 (20c3m)

- Most AR4 coupled models do not have a good representation of the West African Monsoon (WAM);
- Implications for confidence in predictions of how climate change will impact the WAM;
- Good representation in HadGEM3 provides opportunity to improve understanding of mechanisms driving onset;
- Good representation of land surface, and the remote influence of sea surface temperature are important for forecasting timing of onset

Michael Vellinga

Land Surface Feedbacks using GLACE framework

Ensemble mean of zonally averaged (10°W- 10°E) precipitation (mm/day)

Role of local vs remote forcing: Nudging techniques

Met Office

Experiments with relaxing model back to re-analysis over prescribed domains to identify remote influences on African climate and influence of Africa on global climate (following Klinker, 1990)

Initial global studies:

- WAM (10S-40N; 30W-60E)
- S.A Monsoon (10S-40N; 60E-150E)
- Similar to Flaounas et al, we find impact of Asian monsoon on simulation of East Africa

JJA 1983-2002: 600hpa winds

Wilfran Moufouma-Okia

African Easterly Waves: Role of physics

enhance rainfall sufficiently

Caroline Bain

Output 2: Trial new prediction products, monitoring, attribution, seamless monthly-decadal system

© Crown copyright Met Office

Predicting onset timing

based on local time of arrival of 20% of long-term seasonal average

Met Office

Encouraging first results: trial onset forecasts have been provided to Regional Climate Outlook Forums ICPAC, ACMAD and SADC-DMC

Michael Vellinga

Hadley Centre

from long-term

average

New products: onset prediction and monitoring

Example: Greater Horn of Africa, short-rains season 2011- predicted with one month lead

Probability of early Early onset 'onset' predicted most likely. Early onset occurred Number of forecast members: 40 **CSRP** monitoring product: Observed time of 'onset' (in days difference

Prediction is based on local time of arrival of 20% of long-term seasonal average

- Assessment over retrospective • cases indicates forecast can discriminate early/late onset in ~70% of cases (Tanzania/Kenya)
- Onset forecasts being trial at • regional centres in East, West and southern Africa

Michael Vellinga/Lizzie Good

Predicting onset timing: West African season 2011 (July-Sept) predicted from May based on local time of arrival of 20% of long-term seasonal average

Met Office Hadley Centre

-50

Probability of early arrival

Probability of late arrival

Observed time of arrival

Difference from Climatology (no. doys)

Crown Copyright 2011. Source: Met Office

Michael Vellinga/Lizzie Good

Crown Copyright 2012. Source: Met Office

Lizzie Good

Attribution of extreme events

there is a growing tendency to attribute all observed extremes to man-made climate change – bringing potential for mal-adaptation

schematic

Greater Horn of Africa short-rains OND 2010

Severe drought characterised by poor rains OND 2010 and MAM 2011

Preliminary results:

- Little 'man-made' influence detected on OND season natural forcing (La Niña) likely increased risk of dry (consistent with known teleconnections)
- For MAM season: some evidence that man-made influence increased risk of dry (consistent with Funk et al 2008) – but more research needed

Fraser Lott, Nikos Christidis, Peter Stott

'Seamless' monthly-to-decadal prediction: Skill for El Nino/La Nina prediction to 18 months ahead

correlation skill for monthly Niño3.4 index to 5 years ahead; from 22 retrospective forecasts from 1st November – 95% confidence limits

- Positive skill for El Niño/La Niña prediction retained to ~18 months.
- Showing potential for longer-lead rainfall outlooks in regions strongly influenced by ENSO – allowing more time to prepare responses to potential drought/flood.

HadCM3 DePreSys Vs HadGEM3 'DePreSys': November starts yrs2-5

ACC temperature ACC : HodGEM3_DPS (0.668) ACC: (1) - (2) (-0.186)ACC : DePreSys_AR5 (0.482) -0.8 -0.40.4 0.8 -0.8-0.40 0.4 0.8 -0.4-0.20 0.2 0.4 0

- HadGEM3 is more skilful than HadCM3
- Capability for multi-annual prediction over Africa has been improved

Jeff Knight / Martin Andrews

Output 3: Regional Climate Model downscaling

© Crown copyright Met Office

Development of PRECIS V3 for regional modelling over Africa

Wilfran Moufouma-Okia

Bias in HadGEM3-RA 50km simulations of June-August rainfall

Reduced wet bias over Congo basin

- Improved HadGEM3 RCM (PRECIS V3) will be implemented in an African centre and used in trial downscaling of seasonal forecasts in 2012
- Tested at 135km, 50km, 25km, 12km horiz. res.
- Exploring potential to provide the greater spatial detail required by users

Output 4/5: Capacity Building: Fellowship scheme, climate science workshops, support to Regional Climate Outlook Forums,

© Crown copyright Met Office

Fellowship scheme / workshops:

CSRP Fellowship scheme

- 11 African climate scientists appointed as CSRP fellows;
- 4 West; 4 East Africa; 1 Central and 2 southern Africa;
- Fellows will work on CSRP research themes;
- Each fellow has been assigned a (Met Office) expert as mentor;
- Fellows are based at African Institutes, with 4-week visit to the Met Office

Various Met Office mentors

CSRP fellows

- Met Office Hadley Centre
- **Dr Ousmane Ndiaye**: National Agency of Civil Aviation and Meteorology (ANACIM), Dakar, **Senegal**
- Mr Ismaila Diallo: Cheikh Anta Diop University (UCAD), Laboratory for Atmospheric Physics Simeon Fongang (LPASF); Dakar, Senegal
- **Dr Willem Landman**: Council for Scientific and Industrial Research (CSIR), Pretoria, **South Africa**
- Mr Mekonnen Adnew Degefu: Department of Geography and Environmental Studies, University of Addis Ababa, Ethiopia
- Mr Wilfried Pokam Mba: University of Yaoundé 1 and Centre for International Forestry Research (CIFOR), Yaoundé, Cameroon
- Mr Arlindo Meque: National Institute of Meteorology (INAM), Maputo, Mozambique and University of Cape Town, South Africa
- Mrs Mary Kilavi: Kenya Met Department, Nairobi, Kenya
- **Mr Oumar Konte**: National Agency of Civil Aviation and Meteorology (ANACIM), Dakar, **Senegal**
- Dr Philip Omondi Aming'o: IGAD Climate Prediction and Applications Centre (ICPAC), Nairobi, Kenya
- Mr Dominic Soami Pokperlaar: Ghana Meteorological Agency, Accra, Ghana
- Mr Geoffrey Sabiiti: Makerere University, Kampala, Uganda and IGAD Climate Prediction and Applications Centre (ICPAC), Nairobi, Kenya

- Forecasting weather statistics within the climate of the seasonal rainfall over Senegal
- Present day simulations of the West African Monsoon with two kinds of HadGEM3 model (GCM and RCM)
- The performance of HadGEM3 as a seasonal forecasting and research tool for southern African climate variability
- Association between rainfall variability and global climate teleconnection: the case of southwestern Ethiopia
- Investigation of processes driving low-level westerlies in central Africa
- Evaluation of the GloSea4 seasonal forecast system over Mozambique: rainfall climatology and predictability
- Integrating dynamical products into national and regional climate outlook forum products
- Evaluation of seasonal forecasting of rainfall from the farmer's perspective with Kaffrine and Fatick as case studies
- Modelling decadal climate variability over the Eastern Africa region
- Ghana historical climate data development project
- Evaluating MOHC PRECIS system downscaling ability and its climate change projections over the Greater Horn of Africa

Fellowship scheme / workshops:

CSRP Fellowship scheme

- 11 African climate scientists appointed as CSRP fellows;
- 4 West; 4 East Africa; 1 Central and 2 southern Africa:
- Fellows will work on CSRP research themes;
- Each fellow has been assigned a (Met Office) expert as mentor;
- Fellows are based at African Institutes, with 4-week visit to the Met Office

Various Met Office mentors

Workshops in climate science and applications

- Use of dynamical seasonal forecasts for the Greater Horn of Africa' – hosted by ICPAC Nairobi (June 2011);
- 15 participants from countries of the GHA;
- Tools and methods developed helping to enhance regional seasonal forecasting;
- Opportunities for longer-range (ENSObased) predictions explored – potential for longer-lead drought/flood warnings.

Forecasts for the Great Horn of Africa and Outlook for the JJAS rn Sector ICPAC, Nairobi, 6th-17th June 20

CCA Example:CFS prediction of MAM East African Rainfall Y:Correspondence

Andrew Colman

Met Office Hadley Centre

X:CFS model output Rainfall forecast

CFS Rainfall forecast for MAM 2011

Temporal Scores (Mode 1)

Model (red) v Obs (green)

Probability of above average rainfall tercile (chance=33%)

Y:Corresponding Observed rainfall

Andrew Colman

Recommendations to African Climate Policy Centre (UNECA, Addis Ababa)

First Annual Conference on Climate Change and Development in Africa

Development First: Addressing Climate Change in Africa

Outcome Statement

CCDA-

ently

₿S,

First Annual Conference on Climate Change and Development in Africa

Development First: Addressing Climate Change in Africa

17-19 October 2011 = United Nations Conference Centre = Addis Ababa, Ethiopia

(Re

Outcome Statement

Richard Graham

http://www.metoffice.gov.uk/csrp

Thank you. Questions?

© Crown copyright Met Office